0=(-16t^2)+300

Simple and best practice solution for 0=(-16t^2)+300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-16t^2)+300 equation:



0=(-16t^2)+300
We move all terms to the left:
0-((-16t^2)+300)=0
We add all the numbers together, and all the variables
-((-16t^2)+300)=0
We calculate terms in parentheses: -((-16t^2)+300), so:
(-16t^2)+300
We get rid of parentheses
-16t^2+300
Back to the equation:
-(-16t^2+300)
We get rid of parentheses
16t^2-300=0
a = 16; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·16·(-300)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*16}=\frac{0-80\sqrt{3}}{32} =-\frac{80\sqrt{3}}{32} =-\frac{5\sqrt{3}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*16}=\frac{0+80\sqrt{3}}{32} =\frac{80\sqrt{3}}{32} =\frac{5\sqrt{3}}{2} $

See similar equations:

| -14=j-7 | | 7x=3=2x=13 | | 3y+y-6=180-42 | | 2.14x-12.78=-5.76 | | -2x+5=-5x-10 | | 3/7x=7/35 | | 29.95+.10x=49.95+.05x | | 12(x-3)+18=6(2x-3) | | 15=2/3(p-18) | | 2x+1+30=8x-11 | | x11+13=20 | | -3+q=8 | | 0.2x+1/2=-0.3 | | 16(u+1)=16 | | 13y-5=5y+11 | | c12+9=16 | | 2.5d=7.5 | | v4+10=14 | | −7.5x+0.63=−5.37 | | 4(2y-3)=8y-12 | | 2(3n+4)=56 | | 11+1-x=132 | | 0.05=x/0.10 | | -18m-4+4m-14=22m+10 | | x+4x-7=136 | | 1.25v+3.5=v | | x-14=8-x | | -7u+4u=21 | | 2(6x+8)=70 | | 1.5d=5.25 | | (-9)=9.5(a-6.9) | | 2(s+5)=18 |

Equations solver categories